Table of Contents

ABSTRACT  

ACKNOWLEDGMENTS  

TABLE OF CONTENTS  

LIST OF FIGURES  

LIST OF TABLES

1. INTRODUCTION  

1.1. Issues Related to EDS Maglev Using High Temperature Superconductors

1.1.1. AC Losses in HTSC

1.1.2. Applications of HTSC to Transportation Research  

1.2. Test Fixture System Overview

1.3. Goals of this Thesis

1.4. Organization of Thesis

2. LITERATURE REVIEW  

2.1. HTSC Coil Design and Analysis

2.1.1. Prototype Coils and HTSC Design Issues

2.1.2. HTSC Material Properties and Test Data  

2.1.3. HTSC Applications to Magnetic Levitation  

2.1.4. AC Applications and AC Losses in HTSC  

2.2. Inductance Approximate Calculation Methods

2.3. Maglev System Design and Test Data  

2.3.1. Elementary Theory of Magnetic Levitation

2.3.2. Maglev Early Works  

2.3.3. Maglev System Specification and Design

2.3.4. Maglev Circuit Modeling Techniques  

2.3.5. EDS Maglev Electromechanical Stability 43

2.3.6. Maglev Control Systems  

2.3.7. Maglev Thermal Stability  

2.3.8. Maglev Scale-Model Test Results  

2.3.9. Other Issues Related to Maglev System Design  

2.3.9.1. Magnetic Shielding  

2.3.9.2. Guideway Design and Ride Comfort  

2.4. Test Wheel Mechanical Design Issues  

3. TEST FIXTURE DESIGN AND CONSTRUCTION  

3.1. Guideway and Test Wheel Mechanical Design  

3.1.1. Selection of Construction Materials for Wheel  

3.1.2. Guideway Mechanical Design and Metal Cutting  

3.1.3. Test Wheel Static Deflections and Stresses  

3.1.4. Stresses due to Disk Rotation  

3.1.5. Thermal Expansion  

3.1.6. Wheel Resonant Frequencies  

3.1.6.1. Torsional Resonance  

3.1.6.2. Bending Resonance  

3.1.6.3. Disk Flexure  

3.2. Test Wheel Assembly  

3.2.1. Guideway Conductors  

3.2.2. Disk Construction  

3.3. Air Bearing  

3.4. Cryostat and Liquid Nitrogen Delivery System  

4. MAGNET AND CONTROL ELECTRONICS DESIGN  

4.1. Magnet Design  

4.1.1. Iron Core and Copper Coils  

4.1.2. Magnet Wiring  

4.1.3. Superconducting Coils  

4.1.4. Prediction of AC Losses  

4.2. Control Current Source

 

5. ELECTRODYNAMIC MODELS AND ACTIVE SECONDARY SUSPENSION  

5.1. Magnetic Suspension Modeling Techniques  

5.1.1. Ideal EDS System  

5.2. Circuit Modeling of EDS Maglev  

5.2.1. Inductance Modeling of Multiple-Loop Guideway  

5.2.2. Note on Approximate Techniques and Scaling Laws  

5.2.3. Semi-Infinite Distributed Model  

5.3. Active Secondary Control System

 

6. MAGLEV TEST PROGRAM  

6.1. Test Wheel Evaluation  

6.1.1. Runout  

6.1.2. Test Wheel Mechanical Resonant Modes

6.1.3. Preliminary Wheel Tests  

6.2. Basic Maglev Measurements Using Force Sensor

6.2.1. Scaling Laws for Full-Scale System  

6.3. AC Coil Excitation and Force Measurements  

6.4. Tests of Active Secondary Suspension  

6.4.1. Differential Lift  

6.4.2. Response Using Control System  

6.5. Summary of Overall Maglev Test Results  

7. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK  

7.1. Overall Results  

7.2. Recommendations for Future Work  

7.3. Other Concepts  

8. APPENDICES  

8.1. Schematics  

8.1.1. Control Current Source  

8.1.2. Accelerometer  

8.1.3. Position Control System

8.1.4. Liquid Nitrogen Delivery System  

8.2. Simple Magnetic Measurements for Calculation of Mutual Inductance  

8.3. Material properties  

8.3.1. Material Mechanical Properties  

8.3.2. Material Thermal Properties

8.3.3. Material Electrical Properties  

8.3.4. Properties of Liquid Nitrogen  

8.3.5. Approximate Cost of Materials  

8.4. MATLAB Scripts for MIT/Maglev Design  

8.4.1. Stresses in Flywheel  

8.4.2. Resonances in Flywheel  

8.4.3. HTSC Coil Calculations  

8.4.4. Electrodynamic Models  

8.4.4.1. Inductance Calculations  

8.4.4.2. Drag Peak, Critical Speeds, and Force Calculation  

8.4.5. Test Results  

9. REFERENCES  

9.1. High-Temperature Superconducting Magnet Design  

9.2. High-Temperature Superconductors: Material Properties  

9.3. Inductance Calculation Techniques  

9.4. Maglev: Circuit Modeling  

9.5. Maglev: Control Systems --- Electrodynamic Suspensions (EDS)  

9.6. Maglev: Control Systems --- Electromagnetic Suspensions (EMS)

9.7. Maglev: Electromechanical Stability Analysis

9.8. Maglev: Force Calculations  

9.9. Maglev: Guideway Design  

9.10. Maglev: High Tc Magnet Design  

9.11. Maglev: Magnetic Shielding  

9.12. Maglev: Modeling  

9.13. Maglev: Ride Comfort  

9.14. Maglev: System Design  

9.15. Maglev: Test Results  

9.16. Maglev: Thermal Stability Analysis  

9.17. Magnetic Levitation: Elementary Theory  

9.18. Magnetic Levitation System Concepts  

9.19. Magnetic Levitation: Other Applications  

9.20. Materials: Properties, Strength, etc.  

9.21. Miscellaneous References  

9.22. Rotordynamics  

9.23. Structural Stress and Deflection Analysis for Systems  

9.24. Superconductors: AC Applications and Loss Measurements  

9.25. Superconducting Magnet Design --- General  

9.26. Thermal System Design  


Contact Information:

Marc T. Thompson, Ph.D.
Thompson Consulting, Inc.

9 Jacob Gates Road  Harvard, MA  01451
Phone: (978) 456-7722
Email: marctt@thompsonrd.com
Business website:  http://www.thompsonrd.com 

Home Page  |  Curriculum Vitae  |  Consulting Projects  |  Maglev Research at MIT   |   Teaching at WPI   |  Links

Copyright © 1998-2008, Thompson Consulting, Inc.
Page created: October 6, 1998. Last modified: October 6, 1998
http://www.thompsonrd.com/Research/toc.htm